

Measuring methane emissions and feed intake for Norwegian Red cows in commercial herds

ICAR Meeting, Toledo 2023

Karoline Bakke, Geno

Aim

Dairy production based on Norwegian feed resources

- Better utilization of roughage
- More roughage
- Improved feed efficiency
- Lower methane emissions

How to achieve our goals?

- Geno has equipment to measure individual roughage intake and methane
- Commercial dairy herds (14) + 2 research herds
- Farms with AMS
- Norwegian Red dairy cows
- Data collection ongoing
- All cows are genotyped (~ 1.000 pr. Year)

Measure feed intake (and enteric methane)

Phenotyping of methane

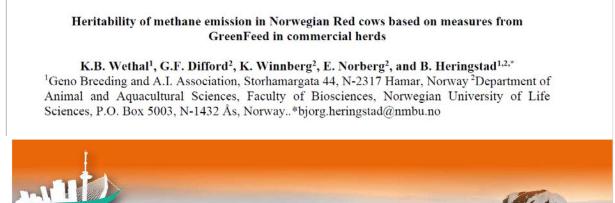
 GreenFeed equipment for CH₄ recordin cows at commercial dairy farms

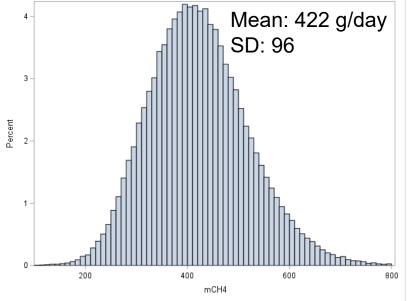
Total of 17 GreenFeed units since 2019

Aim: Phenotyping ~ 1.000 Norwegian F
 cows per year

→ Genetic evaluation of methane emisside

Promising results so far...

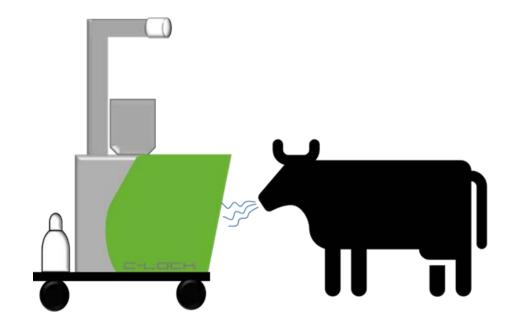

World Congress on


Rotterdam | The Netherlands

3 - 8 July 2022

Genetics Applied to Livestock Production

• First results gave heritability of **0.22** (~ 250 cows)


More data are collected and analyzed...

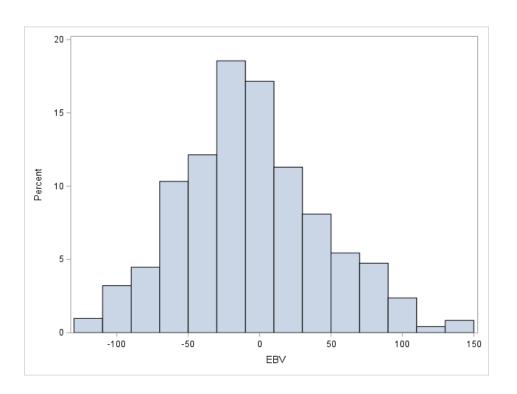
Methane data from 2020 and 2021:

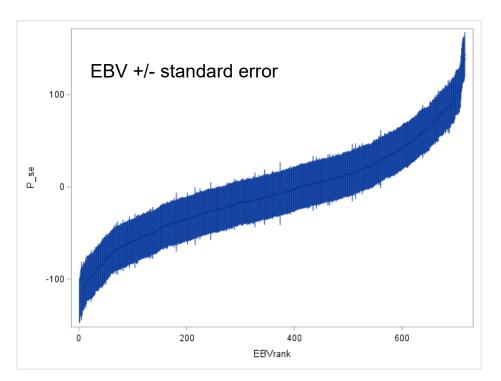
15 GreenFeed units

814 Norwegian Red cows

370.642 CH4 measures

Heritabiliy of methane emissions


CH4 g/day average per cow per day:


Variance component	estimate	se
Herd-Testday	910	23
Additiv genetic	2969	430
Permanent environment	630	296
Residual	4062	18

Heritability: 0.34

Breeding values of methane production in Norwegian Red cows

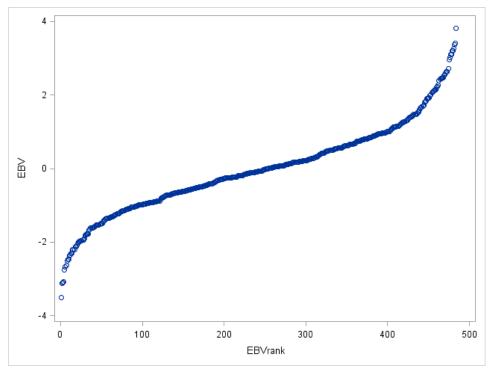
EBV given as CH4 g/day

Heritabiliy of feed intake - DMI

Dry matter intake (roughage + concentrate)
kg/day per cow per day:

Variance component	estimate	se
Herd-Testday	4.42	0.19
Additiv genetic	2.81	0.79
Permanent environment	2.33	0.64
Residual	5.75	0.03

Heritability: 0.18



Breeding values daily dry matter intake

Dry matter intake (roughage + concentrate)
Kg/day per cow per day:

Number of Cows	Mean (sd)	Min	Max
484	-0.01 (1.22)	-3.49	3.81

EBV given as DMI Kg/day

Further research

- Trait definition CH4 (and feed efficiency)
- Accuracy of genomic breeding values
- Genetic associations to other important traits
- Feed efficiency, milk yield, health and fertility...

We aim to balance climate effects, feed efficiency, production, health and fertility in a sustainable breeding goal for Norwegian Red

Conclusion: Data collection of CH4 & feed intake works !

Breeding for better 1995

